無人自動兵器の拡散と戦争の変化

日本安全保障貿易学会: 2014年3月22日

拓殖大学 教授 佐藤丙午

○無人自動兵器(Unmanned Autonomous Weapons)を理解するために

- ・無人化兵器の拡大(2006年の Samsung Techwin SGR-A1 Senrty robot など)
- ・Skynet (『ターミネーター』に出てきたコンピューター・システム) と武器との違い 攻撃判断を前線の武器に搭載した「システム」に委ねるかどうか

攻撃ユニットの自律性

攻撃判断のループの中に人間の判断を「どこまで」含めるか

インターフェース問題

・無人化兵器と自動兵器の違いについて

○無人兵器の使用について

· Unmanned Systems Integrated Roadmap FY2011-2036

メリット: 持続性 (persistence)、多目的性 (versatility)、人命のリスク削減 軍事作戦: 環境検知と戦闘空間把握、CBRN 探知、対 IED 戦闘、港湾安全保障、精密 ターゲッティング、精密攻撃、等

→戦域司令官の要求に従って(役割)拡大可能

入手可能性(affordability)が評価基準の一つになる(産業界との協力の下)

→Better Buying Power (Sep 2010)

無人システムの課題

→相互運用性(有人システムとの関係)、自律性(入手可能性や、社会の受容度、技術レベル等との対応)、航空管制の統合、通信(通信帯の確保と安全)、 訓練、推進装置、無人一有人の連携

・問題の視座

AI (人工知能) の信頼性

ロボットや無人機を使用する非対称戦

大量生産と「特別なデザイン」(製造と輸出に関する課題)

システムの発展可能性(技術レベルと調達コストに関する課題)

ロボットシステムの脆弱性

ロボットシステムと攻撃機能

○兵器の自動化をめぐる議論

· Roadmap FY2011-2036

Level	Name	Description
1	Human Operated	A human operator makes all decisions. The system has no autonomous control of its environment although it may have information-only responses to sensed data.
2	Human Delegated	The vehicle can perform many functions independently of human control when delegated to do so. This level encompasses automatic controls, engine controls, and other low-level automation that must be activated or deactivated by human input and must act in mutual exclusion of human operation.
3	Human Supervised	The system can perform a wide variety of activities when given top-level permissions or direction by a human. Both the human and the system can initiate behaviors based on sensed data, but the system can do so only if within the scope of its currently directed tasks.
4	Fully Autonomous	The system receives goals from humans and translates them into tasks to be performed without human interaction. A human could still enter the loop in an emergency or change the goals, although in practice there may be significant time delays before human intervention occurs.

Multi-Sensor Cooperative Intell Data Fusion Control Cor Robust decision Autonomous PED making Evaluation Capability Environmental Autonomous	Technology	Machine Reasoning Neuro Cognition S			o and					Design for Certification	
Capability Environmental Autonomous								Learning		Intellig Contr	
Integration of Understanding and Collaboration disparate info Adaptation	Capability	making Integration of	en Envir Unders	Evaluation onmental tanding and	Au	Service Control					<u>*</u>

・完全自動化された兵器における人間の関与のレベルについて AI の健全性に対する評価(技術の信頼性) バグや干渉、妨害に対する脆弱性 自己増殖機能を許容するか 法的責任の所在

○無人兵器の「拡散」と軍備管理・軍縮

・兵器の「拡散度」と必要な措置

拡散度が高いシステム (分散): 国際条約や行動規範

拡散度が低いシステム(集中):管理レジーム

・兵器システムの破壊の列度に応じた目標

高い兵器(ex核兵器など):格差の維持(キャッチアップの阻止・水平拡散の防止)

低い兵器:透明性の確保(垂直拡散の防止)

・無人兵器は拡散度が高く、(現時点では)破壊の列度は低い

→開発や配備に関する国際ルールの構築を目指すべき

・自動兵器の軍備管理・軍縮の可能性

→出現していない兵器であり、兵器の潜在性に対する評価をめぐる議論

○おわりに:輸出管理の役割をどう考えるか?